Structure of Manganese(II) Trisodium Tripolyphosphate Dodecahydrate

By P. Lightfoot and A. K. Cheetham*
University of Oxford, Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 1PD, England

(Received 26 March 1986; accepted 30 July 1986)

Abstract

MnNa}_{3} \mathrm{P}_{3} \mathrm{O}_{10} .12 \mathrm{H}_{2} \mathrm{O}, M_{r}=593.01\), monoclinic, $\quad P 2_{1} / n, \quad a=14.763(2), \quad b=9.325(4), \quad c=$ 15.140 (4) $\AA, \quad \beta=89.87(2)^{\circ}, V=2084.2 \AA^{3}, Z=4$, $D_{x}=1.89 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.7107 \AA, \quad \mu=$ $9.87 \mathrm{~cm}^{-1}, \quad F(000)=1212$, room temperature, $R=$ $0.035, w R=0.037$ for 2279 unique reflections with $I>3 \sigma(I)$. The structure is composed of discrete [$\left.\mathrm{MnP}_{3} \mathrm{O}_{10} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]^{3-}$ units, held together by intervening Na^{+}ions and $\mathrm{H}_{2} \mathrm{O}$ molecules via a complex system of $\mathrm{Na}-\mathrm{O}$ and hydrogen bonds. The Mn^{2+} ion is in a distorted octahedral environment, three vertices being occupied by O atoms of water molecules, and three by the chelating α, β, γ-triphosphate ligand. A notable feature of the structure is a five-coordinate O atom, the coordination sphere of which consists of a P atom and four hydrogen-bonded H atoms.

Introduction. Considerable attention has recently focused on the coordination geometries of complexes of polyphosphate chains with kinetically inert metal ions. These structures serve as models for the metalphosphate moieties of biologically important complexes. For example, in recent studies of the possible chelation modes of the enzymatically active Mg adenosine diphosphate and Mg adenosine triphosphate, the structures of the following cobaltammine triphosphates have been determined: β, γ-bidentate $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{P}_{3} \mathrm{O}_{10}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Merritt \& Sundaralingam, 1980), α, γ-bidentate $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{P}_{3} \mathrm{O}_{10}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Merritt, Sundaralingam \& Cornelius, 1981), α, β, γ-tridentate $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{H}_{2} \mathrm{P}_{3} \mathrm{O}_{10}\right]$ (Merritt \& Sundaralingam, 1981) and β - and γ-unidentate $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{P}_{3} \mathrm{O}_{10}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Haromy, Gilletti, Cornelius \& Sundaralingam, 1984).

The first crystallographic study of the isomorphous series of compounds $M^{11} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ ($M^{1 \mathrm{I}}=\mathrm{Ni}$, $\mathrm{Co}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}$ or Zn) reported unit-cell parameters and space group for each phase (Rakotomahanina, Averbuch-Pouchot \& Durif, 1972). A model for the structure of the Mn^{11} phase has been reported (Herceg, 1974) but was not published in full. Recently, the crystal structures of the $\mathrm{Cu}^{1{ }^{11}}$ (Jouini, Dabbabi, Averbuch-Pouchot, Durif \& Guitel, 1984) and the Cd ${ }^{11}$ (Lutsko \& Johansson, 1984) isomorphs have been determined. H atoms were located for the $\mathrm{Cd}^{\text {II }}$

[^0]compound, but not for the $\mathrm{Cu}^{\mathrm{II}}$ compound. The present paper reports the crystal structure of $\mathrm{Na}_{3} \mathrm{MnP}_{3} \mathrm{O}_{10^{-}}{ }^{-}$ $12 \mathrm{H}_{2} \mathrm{O}$, with an emphasis on some interesting features of the hydrogen bonding present in the phase.

Experimental. Crystals of $\mathrm{Na}_{3} \mathrm{MnP}_{3} \mathrm{O}_{10} .12 \mathrm{H}_{2} \mathrm{O}$ were prepared as described by Rakotomahanina, AverbuchPouchot \& Durif (1972). A needle-like crystal, dimensions approximately $0.25 \times 0.02 \times 0.01 \mathrm{~mm}$, was mounted on an Enraf-Nonius CAD-4 diffractometer. The unit-cell constants were determined from the positions of 25 carefully centred reflections. Data were collected using the $\omega-2 \theta$ scan mode with ω scan width $(0.9+0.35 \tan \theta)^{\circ}$, scan speed $0.8-6.71^{\circ} \mathrm{min}^{-1}$, using graphite-monochromated Mo $K \alpha$ radiation over the range $0<\theta<25^{\circ}$ and $+h,+k, \pm l .3$ standard reflections intensity variation $<5 \% .4925$ reflections were measured, of which 2279 were used for refinement, after merging equivalent reflections (merging $R=0.032$); those with $I<3 \sigma(I)$ were regarded as unobserved. Direct methods, using the program MITHRIL (Gilmore, 1984), were used to locate the $\mathrm{Mn}, \mathrm{Na}, \mathrm{P}$ and some of the O atoms. The remaining O and all of the H atoms were located by a series of difference Fourier maps, after refinement of the heavy-atom positions. During the final stages of refinement soft constraints were applied to the watermolecule geometries by giving the $\mathrm{O}-\mathrm{H}$ bond lengths a value of $0.96 \AA$, and the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ bond angles a value of 106°, with e.s.d.'s of $0.03 \AA$ and 3° respectively. These values are in accordance with the average values given for water-molecule geometry in crystalline hydrates studied by neutron diffraction (Chiari \& Ferraris, 1982). A full-matrix least-squares refinement on F, with all non-H atoms anisotropic and all H atoms refined with an equal isotropic temperature factor, converged at $R=0.035, w R=0.037$. A Chebyshev weighting scheme (Carruthers \& Watkin, 1979) with parameters $12 \cdot 0,16.4$ and 66.6 was applied. At convergence r.m.s. shift/e.s.d. $=0 \cdot 1$, and the highest peak in the difference Fourier map $=0.5 \mathrm{e}^{-3}$. Structure analysis and refinement was carried out using the Oxford CRYSTALS system (Carruthers \& Watkin, 1981) on a VAX $11 / 750$ computer. Scattering factors were taken from International Tables for X-ray Crystallography (1974). No corrections for absorption or extinction.
© 1987 International Union of Crystallography

Discussion. The structure is essentially isomorphous with those of the Cd ${ }^{\text {II }}$ (Lutsko \& Johansson, 1984) and $\mathrm{Cu}^{\text {II }}$ (Jouini, Dabbabi, Averbuch-Pouchot, Durif \& Guitel, 1984) phases. Fractional atomic coordinates and isotropic thermal parameters are given in Table 1, and selected distances and angles in Table 2.* The coordination geometry around $\mathrm{Mn}(1)$ is shown in Fig. 1. It has a distorted octahedral environment, being chelated by the α, β, γ-tridentate triphosphate ligand on one side, with the other three positions being occupied

[^1]Table 1. Atomic coordinates with e.s.d.'s and isotropic/ equivalent isotropic temperature factors

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {tso }}$
$\mathrm{Mn}(1)$	0.25136 (5)	0.04405 (8)	0.81774 (5)	0.0150
$\mathrm{P}(1)$	0.39221 (8)	0.2766 (1)	0.91092 (8)	0.0153
$\mathrm{P}(2)$	0.09508 (9)	0.2697 (1)	0.90466 (8)	0.0152
$\mathrm{P}(3)$	0.24157 (9)	$0 \cdot 1550$ (1)	1.01758 (8)	0.0155
$\mathrm{Na}(1)$	-0.1438 (1)	0.4642 (2)	0.7092 (1)	0.0282
$\mathrm{Na}(2)$	0.1134 (2)	$0 \cdot 1944$ (3)	0.1999 (2)	0.0372
$\mathrm{Na}(3)$	-0.7534 (1)	0.2642 (2)	0.5628 (1)	0.0265
$\mathrm{O}(1)$	0.3578 (2)	$0 \cdot 1968$ (4)	0.8300 (2)	0.0196
$\mathrm{O}(2)$	0.2509 (2)	$0 \cdot 0220$ (4)	0.9632 (2)	0.0192
$\mathrm{O}(3)$	0.1429 (3)	-0.3666 (4)	0.0165 (3)	0.0286
$\mathrm{O}(4)$	0.0953 (2)	0.4308 (4)	0.8962 (2)	0.0212
O (5)	0.1477 (2)	$0 \cdot 3635$ (4)	0.6787 (2)	0.0215
$\mathrm{O}(6)$	0.4023 (2)	0.4355 (4)	0.8938 (2)	0.0206
$\mathrm{O}(7)$	-0.0130 (3)	$0 \cdot 6050$ (5)	0.7854 (3)	0.0340
$\mathrm{O}(8)$	0.2491 (2)	0.5497 (4)	0.8262 (2)	0.0206
$\mathrm{O}(9)$	0.0059 (3)	0.0829 (4)	0.1048 (3)	0.0298
O(10)	0.1456 (2)	$0 \cdot 1970$ (4)	0.8300 (2)	0.0204
O(11)	0.6291 (3)	0.3501 (5)	0.9839 (3)	0.0282
O(12)	-0.1566 (2)	0.1394 (4)	0.1790 (2)	0.0208
$\mathrm{O}(13)$	0.4739 (2)	$0 \cdot 2056$ (4)	0.9503 (2)	0.0267
$\mathrm{O}(14)$	0.3126 (3)	0.2710 (4)	0.9847 (2)	0.0262
$\mathrm{O}(15)$	0.2457 (2)	$0 \cdot 1457$ (4)	1.1148 (2)	0.0228
$\mathrm{O}(16)$	0.0021 (2)	$0 \cdot 2072$ (4)	0.9219 (2)	0.0222
$\mathrm{O}(17)$	$0 \cdot 1493$ (2)	$0 \cdot 2335$ (4)	0.9960 (2)	0.0228
$\mathrm{O}(18)$	-0.0182 (3)	0.4371 (5)	0.6092 (2)	0.0292
$\mathrm{O}(19)$	0.0681 (3)	0.0143 (5)	0.3109 (3)	0.0382
O(20)	0.2235 (4)	-0.5287 (6)	0.1571 (3)	0.0434
O(21)	0.1962 (3)	$0 \cdot 2955$ (5)	0.3235 (3)	0.0331
O(22)	0.1194 (3)	-0.2350 (4)	0.2216 (3)	0.0315
H(1)	0.020 (4)	0.538 (6)	0.821 (4)	0.070 (5)
H(2)	0.262 (2)	0.296 (7)	0.324 (5)	0.070 (5)
H(3)	0.083 (4)	-0.213 (7)	0.173 (3)	0.070 (5)
H(4)	0.576 (3)	0.296 (6)	0.967 (5)	0.070 (5)
H(5)	-0.102 (3)	0.132 (8)	$0 \cdot 148$ (4)	0.070 (5)
H(6)	0.176 (4)	0.227 (6)	0.367 (4)	0.070 (5)
H(7)	0.194 (4)	-0.487 (8)	0.108 (3)	0.070 (5)
H(8)	0.118 (4)	-0.435 (6)	-0.024 (4)	0.070 (5)
H(9)	0.133 (4)	0.320 (8)	0.732 (3)	0.070 (5)
H(10)	0.608 (4)	0.423 (6)	1.020 (4)	0.070 (5)
H(11)	0.103 (5)	-0.170 (6)	0.265 (3)	0.070 (5)
H(12)	0.407 (3)	0.179 (7)	0.461 (4)	0.070 (5)
H(13)	0.855 (4)	0.185 (8)	0.232 (3)	0.070 (5)
H(14)	0.296 (3)	0.497 (7)	0.852 (4)	0.070 (5)
H(15)	0.093 (3)	0.392 (8)	0.653 (4)	0.070 (5)
H(16)	0.194 (3)	0.515 (7)	0.848 (4)	0.070 (5)
H(17)	0.004 (2)	0.007 (8)	0.325 (4)	0.070 (5)
H(18)	0.010 (5)	0.114 (6)	0.045 (2)	0.070 (5)
H(19)	0.781 (2)	0.08 (1)	0.637 (4)	0.070 (5)
H(20)	0.022 (4)	0.620 (7)	0.733 (3)	0.070 (5)
H(2)	0.977 (5)	0.014 (4)	0.892 (4)	0.070 (5)
H(22)	-0.026 (5)	0.383 (6)	0.558 (3)	0.070 (5)
H(23)	-0.006 (5)	0.532 (4)	0.591 (4)	0.070 (5)
H(24)	0.095 (4)	0.032 (9)	0.367 (3)	0.070 (5)

by water molecules. In order to accommodate the tridentate chelation, the triphosphate chain is fairly sharply bent, with a $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angle of 95.5 (2) ${ }^{\circ}$.

Crystal packing is shown in Fig. 2. The structure is held together by a complex system of hydrogen bonds (Table 3) and $\mathrm{Na}-\mathrm{O}$ bonds. All three crystallographically different Na atoms are coordinated by

Table 2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Mn}(1)$	O(1)	$2 \cdot 129$ (3)	O(1)	O(2)	3.034 (5)	
$\mathrm{Mn}(1)$	$\mathrm{O}(2)$	$2 \cdot 212$ (3)	O(1)	O (7)	3.003 (5)	
$\mathrm{Mn}(1)$	$\mathrm{O}(5)$	$2 \cdot 249$ (4)	O(1)	O(12)	2.758 (5)	
$\mathrm{Mn}(1)$	$\mathrm{O}(8)$	2.181 (3)	O(2)	$\mathrm{O}(5)$	3.004 (5)	
$\mathrm{Mn}(1)$	O(10)	$2 \cdot 123$ (4)	O(2)	O(10)	3.027 (5)	
$\mathrm{Mn}(1)$	$\mathrm{O}(12)$	2.210 (4)	O(2)	O(12)	2.974 (5)	
$\mathrm{P}(1)$	$\mathrm{O}(1)$	1.522 (4)	O(3)	$\mathrm{O}(4)$	2.717 (5)	
$\mathrm{P}(1)$	O (6)	1.512 (4)	O(3)	$\mathrm{O}(16)$	2.766 (5)	
$\mathrm{P}(1)$	$\mathrm{O}(13)$	1.501 (4)	$\mathrm{O}(3)$	O(20)	2.871 (6)	
$\mathrm{P}(1)$	$\mathrm{O}(14)$	1.621 (4)	$\mathrm{O}(4)$	$\mathrm{O}(7)$	2.832 (5)	
P (2)	$\mathrm{O}(4)$	1.508 (4)	$\mathrm{O}(4)$	$\mathrm{O}(8)$	2.737 (5)	
$\mathrm{P}(2)$	$\mathrm{O}(10)$	1.513 (4)	$\mathrm{O}(5)$	$\mathrm{O}(10)$	2.767 (5)	
$P(2)$	O(16)	1.513 (4)	O(5)	O(12)	2.888 (5)	
$P(2)$	$\mathrm{O}(17)$	1.635 (4)	O(5)	$\mathrm{O}(18)$	2.755 (5)	
$\mathrm{P}(3)$	$\mathrm{O}(2)$	1.495 (4)	O (6)	$\mathrm{O}(8)$	2.704 (5)	
$P(3)$	$\mathrm{O}(14)$	1.586 (4)	O(6)	$\mathrm{O}(11)$	2.764 (5)	
$\mathrm{P}(3)$	$\mathrm{O}(15)$	1.476 (4)	$\mathrm{O}(6)$	$\mathrm{O}(19)$	2.787 (5)	
$P(3)$	$\mathrm{O}(17)$	1.581 (4)	O(7)	$\mathrm{O}(18)$	3.095 (6)	
$\mathrm{Na}(1)$	$\mathrm{O}(15)$	2.401 (4)	O(9)	$\mathrm{O}(12)$	2.699 (5)	
$\mathrm{Na}(1)$	O(18)	2.404 (4)	$\mathrm{O}(9)$	$\mathrm{O}(16)$	3.002 (6)	
$\mathrm{Na}(1)$	O(20)	2.416 (5)	O(9)	$\mathrm{O}(16)$	2.738 (5)	
$\mathrm{Na}(1)$	$\mathrm{O}(21)$	2.421 (5)	$\mathrm{O}(9)$	O(17)	3.025 (5)	
$\mathrm{Na}(1)$	$\mathrm{O}(22)$	2.408 (5)	$\mathrm{O}(11)$	O(13)	2.707	
$\mathrm{Na}(2)$	O(7)	$2 \cdot 397$ (5)	$\mathrm{O}(11)$	O(19)	3.046 (6)	
$\mathrm{Na}(2)$	O(9)	$2 \cdot 384$ (5)	$\mathrm{O}(11)$	O(21)	2.951 (5)	
Na(l)	$\mathrm{O}(15)$	2.381 (4)	$\mathrm{O}(13)$	$\mathrm{O}(18)$	2.740 (6)	
$\mathrm{Na}(2)$	$\mathrm{O}(19)$	2.467 (5)	O(13)	$\mathrm{O}(18)$	2.752 (5)	
$\mathrm{Na}(2)$	$\mathrm{O}(21)$	2.427 (5)	O(16)	$\mathrm{O}(22)$	2.833 (5)	
$\mathrm{Na}(3)$	O(2)	2.436 (4)	$\mathrm{O}(19)$	$\mathrm{O}(22)$	2.794 (6)	
$\mathrm{Na}(3)$	$\mathrm{O}(3)$	$2 \cdot 362$ (4)	$\mathrm{O}(20)$	O(21)	3.032 (6)	
$\mathrm{Na}(3)$	O(5)	2.461 (4)	$\mathrm{O}(21)$	$\mathrm{O}(22)$	2.819 (6)	
$\mathrm{Na}(3)$	O(1)	$2 \cdot 362$ (4)				
$\mathrm{Na}(3)$	$\mathrm{O}(12)$	$2 \cdot 440$ (4)				
$\mathrm{O}(2)$	$\mathrm{Mn}(1)$	$\mathrm{O}(1) \quad 88.6$ (1)	$\mathrm{O}(21)$	$\mathrm{Na}(1)$	O(20)	77.6 (2)
$\mathrm{O}(5)$	$\mathrm{Mn}(1)$	$\mathrm{O}(1) \quad 90 \cdot 5(1)$	$\mathrm{O}(22)$	$\mathrm{Na}(1)$	O(15)	89.0 (1)
$\mathrm{O}(5)$	$\mathrm{Mn}(1)$	$\mathrm{O}(2) \quad 84.7(1)$	$\mathrm{O}(22)$	$\mathrm{Na}(1)$	O(18)	93.7 (2)
$\mathrm{O}(8)$	$\mathrm{Mn}(1)$	$\mathrm{O}(1) \quad 94.3$ (1)	$\mathrm{O}(22)$	$\mathrm{Na}(1)$	O(20)	85.9 (2)
$\mathrm{O}(8)$	$\mathrm{Mn}(1)$	$\mathrm{O}(2) \quad 176.0$ (1)	$\mathrm{O}(22)$	$\mathrm{Na}(1)$	O(21)	163.4 (2)
$\mathrm{O}(8)$	$\mathrm{Mn}(1)$	$\mathrm{O}(5) \quad 92 \cdot 6$ (1)	O(9)	$\mathrm{Na}(2)$	O(7)	89.0 (2)
$\mathrm{O}(10)$	$\mathrm{Mn}(1)$	$\mathrm{O}(1) \quad 94.9(1)$	$\mathrm{O}(15)$	$\mathrm{Na}(2)$	$\mathrm{O}(7)$	134.8 (2)
O(10)	$\mathrm{Mn}(1)$	$\mathrm{O}(2) \quad 88.6$ (1)	$\mathrm{O}(15)$	$\mathrm{Na}(2)$	$\mathrm{O}(9)$	97.8 (2)
O(10)	$\mathrm{Mn}(1)$	$\mathrm{O}(5) \quad 171.2(1)$	O(19)	$\mathrm{Na}(2)$	$\mathrm{O}(7)$	107.5 (2)
$\mathrm{O}(10)$	$\mathrm{Mn}(1)$	$\mathrm{O}(8) \quad 93.8(1)$	O(19)	$\mathrm{Na}(2)$	O(9)	86.3 (2)
$\mathrm{O}(12)$	$\mathrm{Mn}(1)$	$\mathrm{O}(1) \quad 169.4$ (1)	O(19)	$\mathrm{Na}(2)$	$\mathrm{O}(15)$	117.4 (2)
$\mathrm{O}(12)$	Mn (1)	$\mathrm{O}(2) \quad 84.5$ (1)	O(21)	$\mathrm{Na}(2)$	O(7)	86.4 (2)
$\mathrm{O}(12)$	$\mathrm{Mn}(1)$	O(5) $80.7(1)$	O(21)	$\mathrm{Na}(2)$	O(9)	166.4 (2)
$\mathrm{O}(12)$	$\mathrm{Mn}(1)$	$\mathrm{O}(8) \quad 92 \cdot 2(1)$	O(21)	$\mathrm{Na}(2)$	$\mathrm{O}(15)$	94.5 (2)
O(12)	$\mathrm{Mn}(1)$	$\mathrm{O}(10) \quad 93.0$ (1)	O(21)	$\mathrm{Na}(2)$	O(19)	82.9 (2)
$\mathrm{O}(6)$	$\mathrm{P}(1)$	$\mathrm{O}(1) \quad 112.0(2)$	O(3)	$\mathrm{Na}(3)$	$\mathrm{O}(2)$	114.6 (2)
O(13)	$\mathrm{P}(1)$	$\mathrm{O}(1) \quad 112.0(2)$	O(5)	$\mathrm{Na}(3)$	$\mathrm{O}(2)$	75.7 (1)
$\mathrm{O}(13)$	$\mathrm{P}(1)$	$\mathrm{O}(6) \quad 114.9(2)$	O(5)	$\mathrm{Na}(3)$	O(3)	164.7 (2)
O(14)	$\mathrm{P}(1)$	$O(1) \quad 107.3$ (2)	O(11)	$\mathrm{Na}(3)$	O(2)	112.0 (2)
O(14)	$\mathrm{P}(1)$	$\mathrm{O}(6) \quad 102 \cdot 7(2)$	O(11)	$\mathrm{Na}(3)$	O(3)	91.0 (2)
$\mathrm{O}(14)$	$\mathrm{P}(1)$	$\mathrm{O}(13) \quad 107.1$ (2)	O(11)	$\mathrm{Na}(3)$	O(5)	95.5 (1)
O(10)	$\mathrm{P}(2)$	$\mathrm{O}(4) \quad 112.4$ (2)	$\mathrm{O}(12)$	$\mathrm{Na}(3)$	O(2)	$75 \cdot 2$ (1)
O(16)	P (2)	O(4) $\quad 113.6$ (2)	$\mathrm{O}(12)$	$\mathrm{Na}(3)$	O(3)	98.7 (1)
O(16)	$\mathrm{P}(2)$	O(10) 113.7 (2)	$\mathrm{O}(12)$	$\mathrm{Na}(3)$	O(5)	$72 \cdot 2$ (1)
O(17)	$\mathrm{P}(2)$	$\mathrm{O}(4) \quad 106.0$ (2)	O(12)	$\mathrm{Na}(3)$	O(11)	$164 \cdot 2$ (2)
O(17)	P (2)	O(10) 107.4 (2)	P (1)	$\mathrm{O}(1)$	$\mathrm{Mn}(1)$	$130 \cdot 2$ (2)
O(17)	$\mathrm{P}(2)$	O(16) $102.7(2)$	P (3)	$\mathrm{O}(2)$	Mn (1)	118.1 (2)
O(14)	$\mathrm{P}(3)$	O(2) 109.5 (2)	$\mathrm{Na}(3)$	O(2)	$\mathrm{Mn}(1)$	86.0 (1)
$\mathrm{O}(15)$	$\mathrm{P}(3)$	$\mathrm{O}(2) \quad 119.8$ (2)	$\mathrm{Na}(3)$	$\mathrm{O}(2)$	P (3)	155.4 (2)
O(15)	$\mathrm{P}(3)$	O(14) 108.9 (2)	$\mathrm{Na}(3)$	O(5)	Mn (1)	84.6 (1)
O(17)	$\mathrm{P}(3)$	O(2) $\quad 110.4$ (2)	P (2)	$\mathrm{O}(10)$	Mn (1)	136.6 (2)
O(17)	$\mathrm{P}(3)$	$\mathrm{O}(14) \quad 100 \cdot 9(2)$	$\mathrm{Na}(3)$	$\mathrm{O}(12)$	$\mathrm{Mn}(1)$	86.0 (1)
$\mathrm{O}(17)$	$\mathrm{P}(3)$	O(15) $105.7(2)$	$\mathrm{P}(3)$	O(14)	$\mathrm{P}(1)$	135.7 (3)
$\mathrm{O}(18)$	$\mathrm{Na}(1)$	$\mathrm{O}(15) \quad 96.0(1)$	$\mathrm{Na}(1)$	$\mathrm{O}(15)$	$\mathrm{P}(3)$	130.4 (2)
$\mathrm{O}(20)$	$\mathrm{Na}(1)$	O(15) $105.9(2)$	$\mathrm{Na}(2)$	$\mathrm{O}(15)$	$\mathrm{P}(3)$	119.5 (2)
$\mathrm{O}(20)$	$\mathrm{Na}(1)$	$\mathrm{O}(18) \quad 158.0$ (2)	$\mathrm{Na}(2)$	$\mathrm{O}(15)$	$\mathrm{Na}(1)$	108.5 (2)
$\mathrm{O}(21)$	$\mathrm{Na}(1)$	$\mathrm{O}(15) \quad 93.2(2)$	P(3)	O(17)	P (2)	133.9 (2)
$\mathrm{O}(21)$	$\mathrm{Na}(1)$	$\mathrm{O}(18) \quad 102.4$ (2)	$\mathrm{Na}(2)$	O(21)	$\mathrm{Na}(1)$	92.3 (2)

five O atoms; both $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ are coordinated to the terminal $\mathrm{O}(15)$ atom on $\mathrm{P}(3)$, to $\mathrm{O}(21)$ belonging to a water molecule, and to three further independent water molecules each. The $\mathrm{Na}(3)$ polyhedron, however, shares a face with the MnO_{6} octahedron, namely O (2), $O(5)$ and $O(12)$, and is completed by two water molecules. All the H atoms [except $\mathrm{H}(19)$] take part in hydrogen bonding.

The three water molecules to $\mathrm{Mn}(1)$ act solely as hydrogen-bond donors, forming direct links between adjacent complexes via $\mathrm{O}(5)-\mathrm{H}(9) \cdots \mathrm{O}(10), \mathrm{O}(8)-$ $\mathrm{H}(14) \cdots \mathrm{O}(6), \quad \mathrm{O}(8)-\mathrm{H}(16) \cdots \mathrm{O}(4)$ and $\mathrm{O}(12)-$ $\mathrm{H}(13) \cdots \mathrm{O}(1)$. There are no intracomplex hydrogen bonds. The remaining water molecules participate in a

Fig. 1. Coordination geometry around $\mathrm{Mn}(1)$, showing the tridentate chelation of the α, β, γ-triphosphate group.

Fig. 2. Crystal packing within the unit cell, with hydrogen bonds shown as dashed lines. All the Na atoms are five-coordinate but, for clarity, only the coordination around $\mathrm{Na}(2)$ is shown.
three-dimensional network of intercomplex hydrogen bonds. All the water molecules act as hydrogen-bond donors, whilst $\mathrm{O}(3), \mathrm{O}(9), \mathrm{O}(11), \mathrm{O}(18), \mathrm{O}(19)$ and $\mathrm{O}(22)$ also act as acceptors; twice in the case of $\mathrm{O}(11)$, leading to this atom being five-coordinated. The terminal O atoms on $P(1)$ and $P(3)$ accept three hydrogen bonds each $[O(4), O(6)$ and $O(13)]$ whilst $\mathrm{O}(16)$ is within hydrogen-bonding distance of four H atoms, leading to a distorted trigonal bipyramidal coordination (Fig. 3). All the H atoms are believed to be correctly located.

Table 3. Hydrogen bonding

Hydrogen bond $D-\mathrm{H} \cdots A$	Symmetry code	$\begin{gathered} D-A \\ (\AA) \end{gathered}$	$\mathrm{H}-\mathrm{A}$ (\AA)	$\underset{\left({ }^{\circ}\right)}{D-\mathrm{H}-A}$
$\mathrm{O}(3)-\mathrm{H}(8) \cdots \mathrm{O}(4)$	[1:0,-1,-1]	2.717	1.77	169.0
$\mathrm{O}(3)-\mathrm{H}(12) \cdots \mathrm{O}(16)$	[3:0,0,1]	2.766	1.85	172.2
$\mathrm{O}(5)-\mathrm{H}(9) \cdots \mathrm{O}(10)$	[1:0,0,0]	2.767	1.88	157.8
$\mathrm{O}(5)-\mathrm{H}(15) \cdots \mathrm{O}(18)$	[1: $0,0,0$]	2.755	1.82	175.2
$\mathrm{O}(7)-\mathrm{H}(1) \cdots \mathrm{O}(4)$	[1:0,0,0]	2.832	1.88	171.8
$\mathrm{O}(7)-\mathrm{H}(20) \cdots \mathrm{O}(1)$	[2: $0,0,1]$	3.003	$2 \cdot 14$	150.0
$\mathrm{O}(8)-\mathrm{H}(14) \cdots \mathrm{O}(6)$	[1:0,0,0]	2.704	1.79	$165 \cdot 2$
$\mathrm{O}(8)-\mathrm{H}(16) \cdots \mathrm{O}(4)$	11:0,0,0	2.737	1.81	172.7
$\mathrm{O}(9)-\mathrm{H}(18) \cdots \mathrm{O}(16)$	[3:0,0,1]	2.738	2.06	170.3
$\mathrm{O}(9)-\mathrm{H}(21) \cdots \mathrm{O}(16)$	\{1:0,0,-1]	3.002	1.89	148.4
$\mathrm{O}(11)-\mathrm{H}(4) \cdots \mathrm{O}(13)$	[1:0,0,0]	2.707	1.75	172.3
$\mathrm{O}(11)-\mathrm{H}(10) \cdots \mathrm{O}(6)$	[3: $1,1,2$]	2.764	1.86	164.2
$\mathrm{O}(12)-\mathrm{H}(5) \cdots \mathrm{O}(9)$	11:0,0,0]	2.699	1.78	$166 \cdot 9$
$\mathrm{O}(12)-\mathrm{H}(13) \cdots \mathrm{O}(1)$	14: $-1,0,-1$]	2.758	1.85	167.2
$\mathrm{O}(18)-\mathrm{H}(22) \cdots \mathrm{O}(13)$	[4: $-1,0,-1$]	2.740	1.83	$170 \cdot 7$
$\mathrm{O}(18)-\mathrm{H}(23) \cdots \mathrm{O}(13)$	[2: $0,0,1]$	2.752	1.80	174.4
$\mathrm{O}(19)-\mathrm{H}(17) \cdots \mathrm{O}(6)$	[4: $-1,0,-1$]	2.787	1.90	150.0
$\mathrm{O}(19)-\mathrm{H}(24) \cdots \mathrm{O}(11)$	[2: $0,0,0$]	3.046	$2 \cdot 15$	157.8
$\mathrm{O}(20)-\mathrm{H}(7) \cdots \mathrm{O}(3)$	[1:0,0,0]	2.871	1.94	168.5
$\mathrm{O}(21)-\mathrm{H}(2) \cdots \mathrm{O}(22)$	12: $0,0,01$	2.819	1.91	156.0
$\mathrm{O}(21)-\mathrm{H}(6) \cdots \mathrm{O}(11)$	[4: $-1,0,-1$]	2.951	2.04	159.0
$\mathrm{O}(22)-\mathrm{H}(3) \cdots \mathrm{O}(16)$	[3:0,0,1]	2.833	1.90	167.9
$\mathrm{O}(22)-\mathrm{H}(11) \cdots \mathrm{O}(19)$	[1:0,0,0]	2.794	1.93	155.5
	Mean value	2.806	1.89	164.3
	Mean e.s.d.	0.005	0.03	0.6

Acceptor atom symmetry code is given as x, y and z translation, preceded by the symmetry operation as follows: (1) $x, y, z ;(2) \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (3) $-x$, $-y,-z ;$ (4) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

Fig. 3. The $O(16)$ environment, showing distorted trigonal bipyramidal coordination of $\mathrm{P}(2)$ and four hydrogen-bonded H's (see Table 3).

The proposed hydrogen-bonding scheme is supported (a) by the $\mathrm{O}-\mathrm{O}$ distances in Table 2, and (b) by the observation of peaks in the difference Fourier map attributable to H atoms. Table 2 includes all $\mathrm{O}-\mathrm{O}$ distances (not including O atoms in the same phosphate group) out to a distance of $3 \cdot 10 \AA$. Nearly all of these short contacts may be attributed to $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions. As can be seen, $\mathrm{O}(16)$ has four oxygen near neighbours in the range 2.738 to $3.003 \AA$, all of which suggest some degree of interaction between the atoms concerned. It appears that $\mathrm{H}(19)$ does not take part in hydrogen bonding; this seems reasonable as the nearest possible acceptor, $\mathrm{O}(21)$, is at a distance $3.032 \AA$ from $\mathrm{O}(20)$.

We also conducted a ${ }^{31} \mathrm{P}$ solid-state magic-anglespinning NMR study of the isomorphous compound $\mathrm{Na}_{3} \mathrm{ZnP}_{3} \mathrm{O}_{10} .12 \mathrm{H}_{2} \mathrm{O}$; spectra of the title compound cannot be obtained owing to the paramagnetism of the Mn^{2+} ion. Broad resonances were observed at -6.0 and -19.3 p.p.m. (upfield relative to 85% phosphoric acid solution). The relative intensities of the two peaks show that the terminal P nuclei resonate at lower field than the bridging P , in agreement with previous work (Grimmer \& Haubenreisser, 1983). However, the presence of the quadrupolar Na nuclei causes sufficient broadening to make the terminal P nuclei indistinguishable.

We acknowledge the assistance of Dr John Finney for his helpful discussions concerning the hydrogen
bonding. One of us (PL) thanks the SERC for the provision of a Research Studentship.

References

Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Carruthers, J. R. \& Watkin, D. J. (1981). CR YSTALS. User Manual. Oxford Univ. Computing Laboratory, Oxford.
Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Grimmer, A. R. \& Haubenreisser, U. (1983). Chem. Phys. Lett. 99, 487-490.
Haromy, T. P., Gilletti, P. F., Cornelius, R. D. \& Sundaralingam, M. (1984). J. Am. Chem. Soc. 106, 28122818.

Herceg, M. (1974). 2nd Eur. Crystallogr. Meet., Keszthely, Hungary.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jouini, O., Dabbabi, M., Averbuch-Pouchot, M. T., Durif, A. \& Guitel, J. C. (1984). Acta Cryst. C40, 728-730.
Lutsko, V. \& Johansson, G. (1984). Acta Chem. Scand. Ser. A, 38, 415-417.
Merritt, E. A. \& Sundaralingam, M. (1980). Acta Cryst. B36, 2576-2584.
Merritt, E. A. \& Sundaralingam, M. (1981). Acta Cryst. B37, 1505-1509.
Merritt, E. A., Sundaralingam, M. \& Cornellus, R. D. (1981). Acta Cryst. B37, 657-659.
Rakotomahanina, E., Averbuch-Рouchot, M.-T. \& Durif, A. (1972). Bull. Soc. Fr. Minéral. Cristallogr. 95, 516-520.

Structure of $\zeta_{\mathbf{1}}-\mathbf{M n}_{\mathbf{5 . 1 1}} \mathbf{G e}_{\mathbf{2}}$

By Y. Komura, T. Ohba, K. Kifune and H. Hirayama
Department of Materials Science, Faculty of Science, Hiroshima University, Higasi-senda-machi, Naka-ku, Hiroshima 730, Japan
T. Tagai
Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

and N. Yamada and T. Ohoyama
Department of Engineering Physics, The University of Electro-Communications, Chofu-shi, Tokyo 182, Japan
(Received 13 June 1986; accepted 15 July 1986)

Abstract. $M_{r}=425 \cdot 97$, trigonal, $P 3 c 1, a=7 \cdot 198$ (1), $c=39.227$ (4) $\AA, V=1760 \cdot 1 \AA^{3}, D_{x}=7.233 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=18(92 \mathrm{Mn}$ and 36 Ge per unit cell), Mo $K \alpha$, $\lambda=0.71069 \AA, \mu=31.0 \mathrm{~mm}^{-1}, \quad F(000)=3452, T=$ 295 K , final $R(F)=0.0557, w R(F)=0.0400$ for 923
independent reflections. The structure is characterized by two kinds of fundamental layers having three atoms stacked alternately by $c / 30$. Additional atoms are placed on three threefold axes. Ge atoms are located every 2.5 layers and Mn atoms are placed at the © 1987 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43300 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

